If it's not what You are looking for type in the equation solver your own equation and let us solve it.
45t+22t-3t^2=0
We add all the numbers together, and all the variables
-3t^2+67t=0
a = -3; b = 67; c = 0;
Δ = b2-4ac
Δ = 672-4·(-3)·0
Δ = 4489
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4489}=67$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(67)-67}{2*-3}=\frac{-134}{-6} =22+1/3 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(67)+67}{2*-3}=\frac{0}{-6} =0 $
| 5-(x+6)=-2 | | .15x=190 | | x^2,4=17 | | 7x/3x-10=80/20 | | 10n–5=-8n+3 | | 2x5=4 | | 15x-4=3x+9 | | X+29=x+19 | | x2+10=90 | | 2x+6x=84 | | 4+9n=22 | | -5.x-1=-61 | | x+4x=120+(-24) | | x+100x= | | 6=x-(x*0.12) | | 0.12x*x^2=6 | | -9=-8y-5 | | –10x+30=–10 | | 4x+3=14x-123 | | (1/2)^3x+1=(1/2)^5x-1 | | 143x+(-43x)=0 | | 10x-6=4x+11 | | 3x^2=9^2x-1 | | 5-6x=x-16 | | 5(x^+1)=4+x | | 5+3x=5x+25 | | 3x^+4x=5 | | 11x+7=31-x | | 11x+7=31x | | 9-5x=18-6x | | 2πr,C=88 | | 4(3x-1)=2x^ |